Triangle Free Graph
//Check if the graph is triangle free i.e. if the graph doesn't
//have cycles of length 3 then it is said to be triangle free.
namespace TriangleFreeGraph{
class Graph
{
List<int>[] EdgeList;
public Graph(int NoOfVertices)
{
EdgeList = new List<int>[NoOfVertices];
for (int i = 0; i < EdgeList.Length; i++)
{
EdgeList[i] = new List<int>();
}
}
//Method to add an edge
public void AddEdge(int S, int D)
{
if(!EdgeList[S].Contains(D))
EdgeList[S].Add(D);
if(!EdgeList[D].Contains(S))
EdgeList[D].Add(S);
}
private Boolean IsTriangleExists(Boolean[] Visited, int Vertex, int length, int PrevVertex)
{
//If there is a cycle of length 3, then return true.
if (Visited[Vertex] && length == 3) return true;
//If there is a cycle of length more than 3, continue searching with a different vertex.
if (Visited[Vertex] || length>3) return false;
//Mark the vertex as visited.
Visited[Vertex] = true;
//Search for triangle recurrsively.
for (int i = 0; i < EdgeList[Vertex].Count; i++) //Search for triangle recurrsively.
{
if (EdgeList[Vertex][i] == PrevVertex) continue;
if (IsTriangleExists(Visited, EdgeList[Vertex][i], length + 1, Vertex)) return true;
}
//Clear the vertex visited status, for searching a triangle from a different vertex.
Visited[Vertex] = false;
return false;
}
public Boolean IsTriangleExists()
{
Boolean[] Visited = new Boolean[EdgeList.Length];
if (IsTriangleExists(Visited, 0, 0, 0)) return true;
return false;
}
}
class Program
{
static void Main(string[] args)
{
Graph G = new Graph(6);
G.AddEdge(0, 5);
G.AddEdge(0, 3);
G.AddEdge(1, 2);
G.AddEdge(1, 5);
G.AddEdge(2, 4);
G.AddEdge(3, 5);
G.AddEdge(3, 4);
Console.WriteLine(G.IsTriangleExists());
}
}
}
No comments:
Post a Comment